

A: RESEARCH REPORTS by CATEGORY

BIOLOGY

Effect of 50 T Pulsed Magnetic Field on Different Microorganisms	17
The Regulatory Domain of the Myosin Head Behaves as a Rigid Lever	17
MR Microimaging Studies of Mouse Brains For Generation of a Web-Based Atlas	18
NMR Microscopy and Spectroscopy of Single Cells ▼IHRP	18
NMR Microscopy of Isolated Perfused Brain Slices	19
Functional and Spectroscopic Studies of an FHC Mutation in Motif X of Cardiac Myosin Binding Protein-C	20
Independent Movement of Regulatory and Catalytic Domains of Myosin Heads Revealed by Phosphorescence Anisotropy	21
Gas-Phase Hydrogen Deuterium Exchange of Positively Charged Mononucleotides by Use of Fourier	
Transform Ion Cyclotron Resonance Mass Spectrometry	21
Biophysical Studies of MARCKS: Implications for Neuroplasticity Structural and Dynamical Studies of IA-3,	
a Potent Yeast Proteinase A Inhibitor	23
Structural Studies of Mutacin 1140	24
Structure/Function Relations of Neuropeptides and Neuropeptide Precursor Proteins	24
MR Biexponential Diffusion Tensor Imaging of Isolated Rat Hearts	25
Competitive Binding to the Oligopeptide Binding Protein, OppA: In-Trap Cleanup in an FT-ICR Mass Spectrometer	26
Prediction of Alpha-Helical Transmembrane Protein in Mycobacterium	
Tuberculosis Genome ▼IHRP ✓	26
Structural Mapping of Escherichia coli Lactose Permease Using ¹⁹ F Solid State NMR Spectroscopy ▼IHRP ▲	27
Effect of High Magnetic Field on Mammalian Cancer Cells	28
Baseline Mass Resolution of Peptide Isobars: A New Record for Molecular Mass Resolution	29
Unequivocal Determination of Metal Atom Oxidation State in Naked Heme Proteins: Fe(III)Myoglobin,	
Fe(III)Cytochrome c, Fe(III)Cytochrome b5, and Fe(III)Cytochrome b5 L47R	30
Behavioral and Neural Effects of Static High Magnetic Fields	31
A 330 GHz EPR Study of the Semiquinone Biradical QA QB in Photosynthetic Reaction Centers of Rb. Sphaeroides	31
Domain Dynamics of Smooth Muscle Myosin	32
Influence of Transmembrane Peptides on Bilayers of Phosphatidylcholines with Different Acyl Chain	
Lengths Studied by Solid State NMR	33
Analysis of Transdermal Drug Delivery: The Effects of Model Penetration Enhancers on Skin Transport Properties	34
Electrochemical Cancer Therapy Analysis by MRI	35
Initial Steps in the Folding of the FK506 Binding Protein	35
Unique Ligands of the Leucine Binding Proteins: A ¹⁹ F NMR Study	36
Comparison of Gramicidin A and Gramicidin M Channel Conductance Dispersion Properties	37
Structural Studies of Gramicidin A in Long-Chain Lipid Bilayers by Solid State NMR	38
Demembranization Reduces Diffusive Anisotropy of Creatine Phosphate in Skeletal Muscle	39
High Magnetic Field Effects on Gene Expression in Transgenic Arabidopsis ▼IHRP ✓	39
Role of a Conserved Pseudouridine in Eukaryotic Branch Site RNA Structure	40
High Field EPR Study of Heme Proteins Radical Intermediates	41
The <i>G</i> -Factor Anisotropy of Bacteriochlorophyll <i>a</i> *+	42
Active-Site Structures of ATP-Utilizing Enzymes	43
Stable Isotope Incorporation Triples the Upper Mass Limit for Determination of Elemental Composition	
by Accurate Mass Measurement	43
Structural Features of the Branch Site from the Group II Self-Splicing Intron Studied by ¹ H NMR	44
NMD Studies of Spinal Conds In Vive and In Vitus	4.4

High Frequency and Field EPR Spectroscopy of a Mononuclear Manganese(II) Enzyme, FosA,	
Involved in Bacterial Drug Resistance	46
NMR Studies of Red Blood Cell Ghosts	47
Structural Insight into Intact M2 Membrane Protein From Influenza A Virus by 2D Pisema Solid State NMR	47
A Disorder-to-Order Transition in the Regulation of Diphtheria Toxin Repressor Activity	48
Magnetic Field Manipulation of Cell Division	49
Gas-Phase Cleavage of PTC-Derivatized Electrosprayed Tryptic Peptides in an FT-ICR Trapped-Ion Cell:	
Mass-Based Protein Identification without Liquid Chromatographic Separation	50
NMR Studies of Two Proteins That Affect Tissue Remodeling in Human Health and Disease	51
Membrane Protein Structure Determination Using PISA Wheels	52
Solution Structure of a Prokaryotic SH3 Domain from Diphtheria Toxin Repressor	53
CHEMISTRY	
Phosphorous-31 MAS NMR Studies of Insertion of Trialkylphosphine Oxides Into Transition	
Metal Open Framework Coordination Polymers	55
Solid State Carbon-13 CP/MAS-NMR Spectroscopy of Natural and Synthetic Melanins	55
Methylaluminoxane Structure Analysis: Frequency-Stepped, Field Swept, and High-Field MAS ²⁷ Al NMR and	
Comparison with EFG Tensors from ab initio Molecular Orbital Calculations	56
High Frequency and High Field Electron Paramagnetic Resonance Studies of Ferrate Species	57
Preliminary Orientational and Structural Studies of Antimicrobial Salivary Histatin-5 in Oriented Lipid bilayers	58
¹ H NMR Studies of a Zn(II)-Dependent Deoxyribozyme Following Paramagnetic Ion Replacement	60
Determination of Relative Ordering of Activation Energy for Gas-Phase Ion Unimolecular	
Dissociation by Multiphoton Infrared Irradiation	60
Weighted Quasi-Newton and Variable-Order, Variable-Step Adams Algorithm for Determining	
Site-Specific Reaction Rate Constants	61
Investigations of Manganese(III) Corrole Complexes as Solids and in Glasses	62
Theoretical Maximal Precision for Mass-to-Charge Ratio, Amplitude, and Width Measurement	
in Ion-Counting (e.g., Time-of-Flight) Mass Analyzers	63
Analysis of Electrophoretic Transport of Macromolecules Using Pulsed Field Gradient Nuclear Magnetic Resonance	64
Solid State Ruthenium NMR Spectroscopy at High Magnetic Field	65
The Influence of Packing Homogeneity and Distributor Design on Flow Uniformity in Low Pressure	
Chromatographic Columns Studied by Magnetic Resonance Imaging Velocimetry ►IHRP ■	66
High Field Transient EPR of Bisadducts of Fullerene C ₆₀	67
¹⁷ O Isotropic Chemical Shift Probing of Phase Transitions in Hydrogen-Bonded Solids: Squaric Acid	67
Reading Chemical Fine Print: Resolution and Identification of 3000 Nitrogen-Containing	
Aromatic Compounds from a Single Electrospray Ionization Fourier Transform Ion Cyclotron	60
Resonance Mass Spectrum of Heavy Petroleum Crude Oil	68
Complete Compositional Monitoring of the Weathering of Transportation Fuels Based on Elemental	69
Compositions from Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Compositional Analysis for Identification of Arson Accelerants by Electron Ionization Fourier Transform Ion Cyclotron	09
Resonance High-Resolution Mass Spectrometry	70
Molecular Characterization of Petroporphyrins in Crude Oil by Electrospray Ionization Fourier Transform Ion Cyclotron	70
Resonance Mass Spectrometry	71
High Frequency, 220 GHz, CW ENDOR of a Nitroxide Radical with Delocalized Spin Density	71
EPR from EPR-Silent Species: High Frequency and Field EPR Spectroscopy of a Catalytically	/ 1
Relevant Cobalt (I) Molecular Complex	72
EPR from EPR-Silent Species: High Frequency and Field EPR and Magnetic Studies of Nickel(II) Molecular Complexes	73
EPR from EPR-Silent Species: High Frequency and Field EPR Spectroscopy of Vanadium (III) Molecular Complexes	74
Lowest Excited Triplet State in Porphyrins Studied by High Field Transient EMR	76
Direct Optical Spectroscopy of Gas-Phase Molecular Ions Trapped and Mass-Selected by	, 0
Ion Cyclotron Resonance: Laser-Induced Fluorescence Excitation Spectrum of Hexafluorobenzene ($C_6F_6^+$) FIHRP	76
Mass-Selective Ion Accumulation and Fragmentation in a Linear Octopole Ion Trap External to a Fourier	, 0
Transform Ion Cyclotron Resonance Mass Spectrometer	77
An NMR Investigation of Peptide Inhibitors for HIV-1 Protease	78

GEOCHEMISTRY

Rates of Carbon Cycling in a Coastal Wetland in Northwest Florida	79
Using Nuclear Magnetic Resonance Spectroscopy to Study the Structure of Humic Acid	79
Interactions of Mixed Uranium Oxides with Synthetic Groundwater and Humic Acid Using Batch Methods,	
Solubility Determinations, Experimentally and Calculated	80
Isotope Dilution ICP-MS Analysis of Dissolved Iron in Seawater	81
Trace Metals in Aerosols by ICP-MS	82
·	
Strontium Isotopes in the Mixing Zone of the Mississippi River: Implications for Ocean Budgets and Climate Change	82
Mercury Isotopic Evidence for r-Process Enrichment in the Allende Meteorite	83
Metal Sources in Central Idaho Ore Deposits	83
Parameterization of Trace Element Partitioning on the Mantle Solidus at Pressures up to 3.4 GPa	84
Metal Speciation by Capillary Electrophoresis Inductively Coupled Plasma Mass Spectrometry (CE-ICP-MS)	86
Geochemistry of Volcanic Rocks from Small and Large Eruptive Centers in the Villarrica Region, Chile	86
Carbon Isotopic Evidence for the Source and Fate of Dissolved Organic Matter in the Florida Everglades	87
Radiation Response of E' ₁ Centers in Quartz up to Gigarad Doses	88
SUPERCONDUCTIVITY - Basic	
Clapping Mode of a d-Wave Superconductor in a Magnetic Field	89
H-T-J Phase Diagram and Pinning Mechanism in Ba _{1-x} K _x BiO _{3-y} Single Crystals	89
Normal State of the Unconventional Superconductor Sr ₂ RuO ₄ at Low Temperatures in High Magnetic Fields	90
Infrared Spectroscopy of High Temperature Superconductors in High Magnetic Fields	91
Scaling of the AC Conductivity in Superconductors Near the Critical Temperature	92
Upper Critical Field of the Ferromagnetic Superconductor Gd _{1.4} Ce _{0.6} RuSr ₂ Cu ₂ O _{10-δ}	92
Two-Component Model and Its Implications for Properties of Cuprates	93
Exchange Interaction Between Spins in a Superconductor	93
Normal State Resistance of Single Crystals of Pr _{1.85} Ce _{0.15} CuO ₄	94
Disorder and Order Parameter Suppression in <i>d</i> -wave State	95
Semiclassical Theory of a <i>d</i> -wave Superconductor in Magnetic Field	95
Electrical Transport Properties of Strongly Underdoped Y _{1-x} Pr _x Ba ₂ Cu ₃ O _{7-δ}	
Single Crystal Samples Under High Magnetic Field	96
Search for Superconductivity Recurrence in Sr ₂ RuO ₄ Under High Magnetic Fields	96
Doped Stripes in Models for the Cuprates Emerging from the One-Hole Properties of the Insulator ▼IHRP ▲	98
Nature of the Pseudogap in YBa ₂ Cu ₃ O7 ▼IHRP ■	98
Out of Plane Transport in the Layered High-Tc Bi ₂ Sr _{2-x} CaCu ₂ O ₈ Investigated in 60 T Magnetic Fields	99
Angle Dependence of the Cyclotron Resonances in Sr ₂ RuO ₄	100
Anomalous Behavior of Spin Fluctuations in Polycrystalline NdBa ₂ Cu ₃ O ₇ The Angle Dependence of the Magneta Optical Response of the Eventia Superconductor St. BuQ	101
The Angle Dependence of the Magneto-Optical Response of the Exotic Superconductor Sr ₂ RuO ₄	102
c-Axis Transport in the Double-Layered Bi ₂ Sr _{2-x} CaCu ₂ O _{8+δ} in 60 T Pulsed Magnetic Fields	103
Pairing Polarons in High Temperature Superconductors	103
Closing the Pseudogap by Zeeman Splitting in Bi ₂ Sr _{2-x} CaCu ₂ O _{8+y} at High Magnetic Fields Phase Diagram of the Fulde-Ferrell-Larkin-Ovchinnikov State in the	103
Organic Superconductor κ -(BEDT-TTF) ₂ Cu(SCN) ₂	105
Detailed Fermi-Surface Topology Studies of the Superconductor κ-(BEDT-TTF) ₂ Cu(NCS) ₂ and Its Close Relatives	106
Theoretical Studies of Fulde-Ferrell-Larkin-Ovchinnikov State in Unconventional Superconductors Characterizing the Pseudogap Using High Magnetic Fields: Implications on the Phase	107
Diagram of the High- $T_{\rm c}$ Superconductors	108
SUPERCONDUCTIVITY - Applied	100
Application of a Nb Hot-Electron Bolometer for Time-Resolved Electron Magnetic Resonance	109
BaZrO ₃ Insulation Coatings by Sol-Gel Technique for HTS Coils	109
Effect of Composition on the Upper Critical Field for Nb ₃ Sn Conductors Made by the Modified Jelly Roll Process	110
Electrical Characterization of Ceramic Insulation Coatings for Magnet Technology	111
Non-Vacuum YBCO Coated Conductor Development	112
Preparation of Gd ₂ O ₃ and Er ₂ O ₃ Buffer Layers for YBCO Conductors by Continuous Sol-Gel Process	114
Systematic Study of Grain Boundary Grooving on Textured Ni Substrates for Coated Conductors	114

High Performance $Nb_3Sn(Ta)$ by Tin Enrichment and Increased Filament Content Optimization of Heat Treatment Conditions for AgMg-Clad Bi2212 Superconducting Tapes Used for 5 T Insert Magnets Synthesis and Characterization of $(Hg_{0.8}Re_{0.2})Ba_2CaCu_2O_{6+\delta}$ Thick Films on Ag Obtained by a	115 115
Two-Step Dip-Coating/Rolling Method ▼IHRP	116
The Influence of BaO2 Additions on Microstructure and Superconducting Properties of Bi ₂ Sr ₂ CaCu ₂ O ₈₄₈	117
Magneto-Optical Imaging Study of Crack Formation in Superconducting Tapes Caused by Applied Strain	119
Temperature and Magnetic Field Dependence of the Critical Current of Bi ₂ Sr ₂ Ca ₂ Cu ₃ O _x Tape Conductors	120
Compression-Tension Stress-Strain-Ic Measurements of Bi-2223 Tapes	122
High Field Test Coil for Navy 25 MW Motor Program	123
Characterization of Nb ₃ Sn Superconductors	123
QUANTUM SOLIDS	
	105
Magnetic Ordering in ³ He Nano-Clusters	125
Field-Induced Spin Diffusion Anisotropy in Dilute Polarized Fermi Liquids VIHRP	125
NMR Studies of Particle Exchange in a Triangular Lattice of ³ He Atoms	126
KONDO / HEAVY FERMION SYSTEMS	
dHvA Study on CeNiSn	129
High Field c-axis Magnetotransport of Single Crystal YbNi ₂ B ₂ C	129
High Field Magnetotransport of a New Class of Ce-Based, Heavy Fermion Superconductors: CeRhIn ₅	130
Ultrasonic and Magnetization Measurements in UPt ₃ Near the Metamagnetic Transition	131
First-Order Valence Transition in YbInCu ₄ in the (B,T)-Plane	131
Correlated Electron Materials	132
Electronic Structure of RMIn ₅ (R=Ce, La, Y; M=Co, Ir, Rh)	133
Locally Critical Quantum Phase Transitions in Heavy Fermion Systems	134
de Haas van Alphen Experiments in Ce and Yb Compounds	135
Griffiths Phase of the Kondo Insulator Fixed Point	136
Heat Capacity Measurements in NHMFL 60 T Quasi-Continuous Magnet ▼IHRP ▲	137
Specific Heat of Ce _{0.8} La _{0.2} A ₁₃ in Magnetic Fields	138
Preliminary dHvA Measurements of PuX ₃ , X=Sn, Ga, and In	138 139
Electrical Resistivity of UBe ₁₃ in High Magnetic Fields: Aging Effects Ultrasonic Spectroscopy in Pulsed Magnetic Fields	139
Non-Fermi Liquid Behavior at a Metamagnetic Transition?/Specific Heat and Magnetization as a Function	139
of Field Specific Heat in Field of CeTIn ₅	140
Irreversible Magnetoresistance in Single-Crystalline CePtSn	141
Magnetoresistance in UCu _{4+x} Al _{8-x} Compounds	141
Investigation of Low-Temperature Resistivity of the Non-Fermi Liquid Compound $Sc_{1+x}U_xPd_3$	142
MOLECULAR CONDUCTORS	
	1 42
Angular Dependent Investigation of the Magnetic Field Induced Superconducting Phase of λ -(BETS) ₂ FeCl ₄ Shubnikov - de Haas Effect and Yamaji Oscillations in the Antiferromagnetically Ordered	143
Organic Superconductor κ-(BETS) ₂ FeBr ₄ : A Fermiology Study	144
Millimeter-Wave Spectroscopy of the Organic Spin-Peierls System β'-(ET) ₂ SF ₅ CF ₂ SO ₃ ▼IHRP ▲	145
Anisotropic Critical Field Study of α-(ET) ₂ NH ₄ Hg(SCN) ₄ Using rf Penetration Proof of Interplane Coherence Using Cyclotron Harmonics in the Organic	148
Superconductor β"-(BEDT-TTF) ₂ SF ₅ CH ₂ CF ₂ SO ₃	148
High Field Calorimetry of Organic Conductors in the Portable Dilution Refrigerator	150
Persistent Currents in an Organic Metal "Only" in Strong Magnetic Fields	151
To Be or Not to Be Spin-Split	152
Pressure Dependence of the Quantum Hall Effect of (TMTSF) ₂ ReO ₄	153
The Role of Molecular g Anisotropy in Determining EPR Linewidth in Radical-Ion Salts of	
$Me(2,5-Dimethyldicyano-quinonediimine)_2$ Class \blacksquare IHRP \blacksquare	154
Quantum Melting of the Quasi-Two-Dimensional Vortex Lattice in κ-(ET) ₂ Cu(NCS) ₂	155
Detailed Modeling of Angle-Dependent Magnetoresistance Oscillations and Fermi-Surface Traversal Resonances	156
Fermi Surface and Electrical Transport Properties of a τ Phase Organic Conductor	157

Magnetization of Low Dimensional Quantum Heisenberg Antiferromagnets	204
Magnetization Measurements of New S=1/2 Antiferromagnetic Spin-Ladder Compounds	205
Resistivity of Mixed-Phase Manganites ▼IHRP ✓	205
Unusual Thermodynamic Properties of Lanthanide Ruthenates	206
High-Field Magnetization of the Magnetic Molecules {Mo ₇₂ Fe ₃₀ } and {Mo ₁₂ Ni ₄ }	207
Fermi Surface and Spectral Functions of a Hole Doped Spin-Fermion Model for Cuprates	208
Magnetization Measurements on the III-VI Diluted Magnetic Semiconductor Ga1 xMnxS at High Fields	208
Magnetoresistance of ErNi ₂ B ₂ C	209
Automotive Paint Stabilization Study by EPR	210
HFEPR Spectroscopy of Metal Centers in Silicon Oxide Glasses	210
Far Infrared Magnetoelastic Coupling in Mn ₁₂ -Acetate	211
Using Electronic Structure Changes to Map the H-T Phase Diagram of α-NaV ₂ O ₅	212
High Magnetic Field NMR Study of LiVGe ₂ O ₆ , a Quasi 1-D Spin S=1 System	212
Characterization of the Novel Low Dimensional Magnetic System (CH ₃) ₂ NH ₂ CuCl ₃	213
The Magnetic Spin Ladder (C ₅ H ₁₂ N) ₂ CuBr ₄ : High Field Magnetization and Scaling Near Quantum Criticality	214
Thermoelectric Power of Half-Metallic Chromium Dioxide Films	214
Microstructures of LiCu ₂ O ₂ Single Crystal Studied by Transmission Electron Microscopy ▼IHRP ▲	216
Magnetoresistance Anisotropy in Bismuth Antidot Arrays in High Magnetic Field	217
Ferromagnetic, A-Type, and Charge-Ordered CE-Type States in Doped Manganites Using Jahn-Teller Phonons	218
Electron-Spin Resonance Investigation of the Spin-Chain System LiCu ₂ O ₂ FIHRP Minute Spin-Chain System LiCu ₂ O ₃ FIHRP Minute Spin-Chain System LiCu ₂ O ₄ FIHRP Minute Spin-Chain System LiCu ₂ O ₅ FIHRP Minute Spin-Chain System LiCu ₂ O ₆ FIHRP Minute Spin-Chain System LiC	218
Microwave Evidences of the Metal-Insulator Phase Transition in Cu(DMe-DCNQI) ₂	210
System with Partial Deuteration FIHRP	219
Microwave Properties of Nd _{0.5} Sr _{0.5} MnO ₃ : The Key Role of Orbital Effects ▼IHRP ✓	219
OTHER CONDENSED MATTER	
Magnetotransport Properties of Novel Semiconducting and Mesoscopic Structures	221
Novel Amplitude Modulation Effects in Graphite Particle Orbits in Magnetic Levitation	
Under Ambient Air and Vacuum Conditions ▼IHRP ✓	222
The Study of Ultrafast Structural Dynamics on a Femtosecond Timescale with Time-Resolved Electron Diffraction	224
High Field NMR Studies of Density Waves in Rb _{0.3} MoO ₃ and (TMTSF) ₂ PF ₆	224
Magnetotransport in High Purity Bismuth Crystals	225
Out-of-Plane Magnetoresistance of Sr ₂ RuO ₄ ▼IHRP ▲	226
¹⁰⁹ Ag NMR Study of Mobile Ions in the Glassy Fast Ionic Conductor zAgI +	
$(1-z)(0.525 \text{ Ag}_2\text{S} + 0.475(0.5\text{B}_2\text{S}_3 + 0.5\text{SiS}_2))$	227
Magnetically Induced Texture Changes in Zn-1.1%Al Alloy	228
Tunneling Spectroscopy and Hall Effect Measurements on Gd _x Si _{1-x} and Y _x Si _{1-x} ▼IHRP⊿	229
Investigation of Sonoluminescence Under High Magnetic Fields	230
MAGNETIC RESONANCE TECHNIQUES	
Solid State NMR Studies in Polyolefins	231
Detection of Spin Labels in Aqueous Solutions by HFEPR	231
PISEMA Powder Patterns and PISA Wheels	232
Double Rotation NMR at High Fields	232
Probes for 19.6 T (833 MHz) Solid State NMR	234
Molecular Refinement and Cross-Validation with Solid-State NMR Orientational Data	235
HFEPR Concentration Sensitivity Study of Frozen Mn(III) Solutions ▼IHRP▲	235
³¹ P NMR Study of Phase Transitions in KTiOPO ₄	236
Resolution Enhancement in Solution NMR on the Keck Magnet by Intermolecular Zero-Quantum	230
Detection and Matrix Pencil Estimation	237
Toward the NMR Solution Structure of CBFB-SMMHC	238
High Field ²⁷ Al MAS NMR of Zeolite MCM-22	239
Single Crystal EPR Studies of the Fe ₈ Single Molecule Magnet	240
Perspectives of Solid State NMR for Material Sciences at Very High Magnetic Fields	241
The Effect of Radio Frequency Field Inhomogeneity on Heteronuclear Dipolar Recoupling in Solid State NMR	242
Electrically Detected ENDOR and DNP in a Two-Dimensional Electron System at n=1	243